287 research outputs found

    Effects of gender and social support on cardiovascular reactivity to a speech task

    Get PDF
    The effects of gender and social support on cardiovascular reactivity to a speech task were examined in this study. Seventeen males and seventeen females performed a speech task, once in the presence of an experimenter with their significant other present offering encouragement and support and once in the presence of the experimenter alone. Both blood pressure (i.e., systolic (SBP) and diastolic (DBP)) and hemodynamic parameters (i.e., heart rate (HR), cardiac output (converted to cardiac index, CI), stroke volume (converted to stroke index, SI), and pre-ejection period (PEP)) were measured during the speech tasks. In addition, total peripheral resistance (TPR) was calculated to examine the effects of the social support manipulation on the vasculature. Performance of the speech tasks was associated with increased SBP, DBP, and HR responses, as well as increased CI and TPR and decreased PEP. Females exhibited higher HR, SI, and CI and lower PEP and TPR than males during the speech tasks. Males exhibited a greater reduction in SI during both preparatory and speech phases than females. No main or interaction effects for social support were noted. These findings suggest that the presence of a significant other may not be sufficient to attenuate cardiovascular reactivity to a speech task and that other more subtle factors may be important.*.;*This dissertation was funded by grants from the West Virginia University Doctoral Student Research Program and the Department of Psychology Alumni Fund for Graduate and Undergraduate Student Research and Travel

    A genome-wide association study in multiple system atrophy

    Get PDF
    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with .5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p , 1 3 1026, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA.We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps

    A Neurotoxic Phosphoform of Elk-1 Associates with Inclusions from Multiple Neurodegenerative Diseases

    Get PDF
    Neurodegenerative diseases are characterized by a number of features including the formation of inclusions, early synaptic degeneration and the selective loss of neurons. Molecules serving as links between these shared features have yet to be identified. Identifying candidates within the diseased microenvironment will open up novel avenues for therapeutic intervention. The transcription factor Elk-1 resides within multiple brain areas both in nuclear and extranuclear neuronal compartments. Interestingly, its de novo expression within a single dendrite initiates neuronal death. Given this novel regionalized function, we assessed whether extranuclear Elk-1 and/or phospho-Elk-1 (pElk-1) protein might be associated with a spectrum of human neurodegenerative disease cases including Lewy body Disease (e.g. Parkinson's), Alzheimer's disease, and Huntington's Disease. We first determined the importance of Elk-1 post-translational modifications on its ability to initiate regionalized cell death. We next screened human cases from three major neurodegenerative diseases to look for remarkable levels of Elk-1 and/or pElk-1 protein as well as their association with inclusions characteristic of these diseases. We compared our findings to age-matched control cases. We find that the ability of Elk-1 to initiate regionalized neuronal death depends on a specific phosphosite, T417. Furthermore, we find that T417+ Elk-1 uniquely associates with several types of inclusions present in cases of human Lewy body Disease, Alzheimer's disease, and Huntington's Disease. These results suggest a molecular link between the presence of inclusions and neuronal loss that is shared across a spectrum of neurodegenerative disease

    The Pit & the Pendulum: Sex Offender Laws

    Get PDF
    For centuries the criminal justice system has struggled to define the methodology of and the justifications for social control of sexual behavior that does not conform to community mores. This poster compares and contrasts the historical and contemporary attempts in the United States, Canada, Belgium, the United Kingdom, and Germany to address the risk created by individuals who engage in behaviors broadly characterized as sexually deviant. Where available, we consider the rationale for sentencing, and the earliest attempts to bring “treatment” into the criminal dispositional formula for sexual based prosecution. We also consider the impact that the choice of societal response has on risk assessment and evaluation in the various systems, including where available, the assessment and commitment of juvenile offenders. The current practice of civil commitment for a person deemed to be a sexually violent predator (SVP) is discussed highlighting the U.S. Supreme Court decision in Kansas v. Hendricks. This practice will then be compared and contrasted with the approach of designating an offender as a Dangerous Offender (DO) or a Long-Term Offender (LTO) under the criminal law. We also highlight sex offender registries where applicable. This poster is intended as an overview of the law as it exists, and not as a defense or a critique of any specific model

    SORL1 mutation in a Greek family with Parkinson's disease and dementia

    Get PDF
    Whole exome sequencing and linkage analysis were performed in a three generational pedigree of Greek origin with a broad phenotypic spectrum spanning from Parkinson’s disease and Parkinson’s disease dementia to dementia of mixed type (Alzheimer disease and vascular dementia). We identified a novel heterozygous c.G1135T (p.G379W) variant in SORL1 which segregated with the disease in the family. Mutation screening in sporadic Greek PD cases identified one additional individual with the mutation, sharing the same 12.8Mb haplotype. Our findings provide support for SORL1 mutations resulting in a broad range of additional phenotypes and warrants further studies in neurodegenerative diseases beyond AD

    Modules, networks and systems medicine for understanding disease and aiding diagnosis

    Get PDF
    Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics data have identified modules of disease-associated genes that have been used to obtain both a systems level and a molecular understanding of disease mechanisms. For example, in allergy a module was used to find a novel candidate gene that was validated by functional and clinical studies. Such analyses play important roles in systems medicine. This is an emerging discipline that aims to gain a translational understanding of the complex mechanisms underlying common diseases. In this review, we will explain and provide examples of how network-based analyses of omics data, in combination with functional and clinical studies, are aiding our understanding of disease, as well as helping to prioritize diagnostic markers or therapeutic candidate genes. Such analyses involve significant problems and limitations, which will be discussed. We also highlight the steps needed for clinical implementation

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    GDNF and Parkinson's Disease : Where Next? A Summary from a Recent Workshop

    Get PDF
    The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.Peer reviewe
    corecore